OK
Coatings Ingredients
Industry News

Researchers Develop New Anti-reflective Nanocoating Inspired by Fly Eyes

Published on 2020-09-22. Edited By : SpecialChem

TAGS:  Smart Coatings   

A team from UNIGE has developed a nanoscale coating on different types of surfaces that usually covers the eyes of fruit flies, and which provides anti-reflective, anti-adhesive properties. The cornea of an insect without a coating typically reflects about 4% of the incident light, whereas the proportion drops to zero in insects that do have the covering. Thanks to its anti-adhesive properties, the coating also provides physical protection against the tiniest dust particles in the air.

Nanocoating-fly-eye

Artificial Nanocoating with Anti-adhesive Properties


We subsequently managed to produce retinin at very low-cost using bacteria genetically modified for this purpose”, says Vladimir Katanaev, a professor in the Department of Cell Physiology and Metabolism in UNIGE’s Faculty of Medicine and the study’s lead investigator.

“After purifying it, we mixed it with different commercial waxes on glass and plastic surfaces. We were then able to reproduce the nano-coating very easily. It is similar in appearance to the coating found in insects and has anti-reflective and anti-adhesive properties. We think that we can deposit this type of nano-coating on almost any kind of surface, including wood, paper, metal and plastic.”

Also Read: Nanotechnology Advances for Functional Coatings – R&D Overview

Interest Among Manufacturers of Contact Lenses and Medical Implants


Initial tests have shown that the coating is resistant to 20 hours of washing in water (it is easily damaged by detergent or scratching, although technological improvements could make it more robust). The anti-reflective properties have already aroused a certain degree of interest among manufacturers of contact lenses, while the anti-adhesive properties could appeal to the producers of medical implants.

Indeed, this type of coating could make it possible to control where human cells hook on. Industry already has the techniques needed to obtain this outcome. But they use harsh methods, such as lasers or acids. The Geneva team’s solution has the advantage of being inexpensive, benign and totally biodegradable.

Alan Turing: Guiding Light

Based on their preliminary results, in 2015 Professor Katanaev and his colleagues suggested that the nano-coating resulted from a morphogenesis mechanism that the British mathematician Alan Turing had modelled in the 1950s. This model holds that two molecules are organized automatically to produce patterns in regular patches or strips. The first serves as an activator, starting a process where a special pattern emerges and self-amplifies. But it also stimulates the second molecule at the same time, which acts as an inhibitor and is diffused more quickly. This model has made it possible to explain natural phenomena on a macroscopic scale – such as the spots on a leopard or the stripes on a zebra – and on a microscopic scale but never yet on the nanoscopic scale.

The Geneva-based researcher has gathered more evidence to support this hypothesis. Thanks to biochemical analyses and the use of genetic engineering, Professor Katanaev and his colleagues have succeeded in identifying the two components involved in the reaction-diffusion model developed by Turing. This hinges on a protein called retinin and wax produced by several specialized enzymes, two of which have been identified. Retinin plays the role of activator: with its initially unstructured shape, it adopts a globular structure upon contact with the wax and begins to generate the pattern. The wax, on the other hand, plays the role of inhibitor. The powerplay between the two leads to the emergence of the nano-coating.


Source: University of Geneva
Back to Top