OK
Coatings Ingredients
Industry News

Researchers Create Surface Coating Technology to Increase Electron Emission

Published on 2023-05-18. Edited By : SpecialChem

Researchers Surface Coating Technology Increase Electron Emission An international research group develops a new surface coating technology that is capable of significantly increasing electron emission in materials. Their breakthrough is expected to improve the production of high-efficiency electron sources, and lead to increased performances in electron microscopes, electron beam lithography systems, and synchrotron radiation facilities.

Contributing to Development of Advanced Materials & Technologies


Free electrons are those not bound to a specific atom or molecule, wandering freely within a material. They play a vital role in a wide range of applications, from photoreactors and microscopes to accelerators.

One property that measures the performance of free electrons is work function. The minimum energy required for electrons to escape from a material’s surface into a vacuum. Materials with a low work function require less energy to remove electrons and make them free to move around, whereas materials with a high work function need more energy to remove electrons.

A lower work function is critical for enhancing the performance of electron sources and contributes to the development of advanced materials and technologies that can have practical applications in various fields, such as electron microscopy, accelerator science, and semiconductor manufacturing.

Currently, hexaboride lanthanum (LaB6) is widely employed for electron sources because of its high stability and durability. To improve LaB6's efficiency, the research group turned to hexagonal boron nitride (hBN), a versatile chemical compound that is thermally stable, possesses a high melting point, and is very useful in harsh environments.

Strategy for Lowering Work Function


"We discovered that coating LaB6 with hBN lowered the work function from 2.2 eV to 1.9 eV and increased electron emission," said Shuichi Ogawa, co-author of the study and current associate professor at Nihon University (formerly at Tohoku University's Institute of Multidisciplinary Research for Advanced Materials).

Photoemission electron microcopy and thermionic emission electron microscopy performed by the group confirmed the lower work function compared to non-coated and graphene coated regions.

Looking ahead, Ogawa and his colleagues hope to hone the coating technique. "We still need to develop a technique for coating hBN onto LaB6's non-oxidized surface, as well as a way to coat LaB6 electron sources with a pointed triangular shape."

Source: Tohoku University


Back to Top