The material selection platform
Coatings Ingredients
The material selection platform
Coatings Ingredients
Product News

Henkel Launches New Formulation Within Its Micro-thermal Interface Coating Portfolio

Published on 2022-09-19. Edited By : SpecialChem

TAGS:  Smart Coatings   

Henkel Launches New Formulation for Its Micro-thermal Interface Coating Portfolio Henkel announces a new formulation within its Bergquist microTIM (mTIM) 1000 series micro-thermal interface coating portfolio. The materials offer significant reductions in functional heat experienced by optical transceivers, with the latest development addressing the thermal challenges of 400, 600 and 800 Gb pluggable optical modules (POMs).

High-capacity POMs can produce as much as 30 watts of power in operation, generating performance-diminishing heat. Current approaches to thermal control involve conventional metal-to-metal interfaces (transceiver to riding heat sink) and the use of adhesive-applied phase change materials.

Nickel Compatible Formulation with Enduring Thermal Control for POMs

Henkel’s coating materials offer a more robust solution with the company’s most recent formulation, Bergquist microTIM mTIM 1028, compatible with nickel. It is designed to deliver enduring thermal control for high bandwidth density POMs. These devices are typically constructed with nickel housings and interface with nickel-coated copper heatsinks for system heat removal.

Compared to alternatives, Bergquist microTIM mTIM 1028 can withstand as many as 500 pulls and insertions without performance degradation and reduces operational temperatures per POM by as much as 0.18° C/W.

With today’s data throughput expectations, heat control is one of the most effective ways to improve operational efficiency,” explained Wayne Eng, global head of Data & Telecom Market Strategy at Henkel.

Our groundbreaking microTIM is well-proven with standard aluminum-based riding heatsinks and is now extended to nickel-coated copper heatsinks often employed with higher-bandwidth modules. Furthermore, the material can also be coated on the transceiver, providing a value-added solution for POM manufacturers as a point of competitive differentiation,” said Eng.

Result of Internal Testing with Module

Internal testing of Bergquist microTIM mTIM 1028 with a QSFP-DD 400 Gb module revealed the following:

  • Produced an average of 0.18° C/W performance increase compared to a metal-to-metal interface across various pressure ranges.
  • A 300°C temperature spike for a 30-minute duration had no adverse effect on coating performance.
  • Compatible with complex heat pipe and fin heatsink designs.
  • May also be applicable as a heat dissipation solution for any metal-to-metal interface, including liquid cooling components.

Our approach to heat control in hyperscale data center line cards is a critical development for future performance objectives. While conventional thermal management methods are adequate for 100 Gb POMs, the bandwidth and reliability demands of next-generation links are tremendous,” commented Eng.

We believe this new material innovation is an important element for line card thermal control and performance optimization, and could potentially play a role in reducing heat within other data center applications, such as liquid cooling pipes and plates,” added Eng.

Source: Henkel


Back to Top