OK
The Universal Selection Source:
Coatings Ingredients
Industry News

New Ultra-thin Coating to Improve Efficiency of Lithium-sulfur Batteries

Published on 2017-03-22. Author : SpecialChem

Yale scientists have developed an ultra-thin coating material that has the potential to extend the life and improve the efficiency of lithium-sulfur batteries, one of the most promising areas of energy research today.

In a study published online in the Proceedings of the National Academy of Sciences, researchers describe the new material — a dendrimer-graphene oxide composite film — which can be applied to any sulfur cathode. A cathode is the positive terminal on a battery.

Enhancing Battery Efficiency

Ultra thin coating
Left: Ultra-thin material on a glass slide, prepared by
casting the gel-like slurry on copper foil and
transferring the film. Right: An electrode coated with
a layer of the new material.

According to the researchers, sulfur cathodes coated with the material can be stably discharged and recharged for more than 1,000 cycles, enhancing the battery’s efficiency and number of cycles.

“Our approach is general in that it can be integrated with virtually any kind of sulfur electrode to increase cycling stability,” said Hailiang Wang, assistant professor of chemistry at Yale, faculty member at the Yale Energy Sciences Institute at Yale West Campus, and lead investigator of the study. “The developed film is so thin and light it will not affect the overall size or weight of the battery, and thus it will function without compromising the energy and power density of the device.”

High Energy-density Batteries


  • New types of electrodes — positive and negative terminals — are considered essential for the development of a new generation of high energy-density batteries
  • As lithium-ion batteries begin to reach their capacity limits, many researchers are looking at lithium-sulfur as a solution
  • Sulfur is both lightweight and abundant, with a high theoretical energy capacity. However, existing lithium-sulfur battery technology suffers from a loss of capacity during cycling

A Gel-like Slurry


The Yale team made its discovery by combining the distinct properties of two material components. They merged the mechanical strength of graphene oxide with the ability of a dendrimer molecule to confine lithium polysulfides. The result is a gel-like slurry that can be readily coated as a 100-nanometer-thin film onto sulfur electrodes.

The corresponding authors of the study are Gary Brudvig, the Benjamin Silliman Professor and chair of chemistry, professor of molecular biophysics and biochemistry, and director of the Yale Energy Sciences Institute at Yale West Campus; Yale chemistry professor Victor Batista; and Wang.

Co-authors of the study are Wen Liu, Jianbing Jiang, Ke R. Yang, Yingying Mi, Piranavan Kumaravadivel, Yiren Zhong, Qi Fan, Zhe Weng, Zishan Wu, and Judy Cha, all of Yale, and Henghui Zhou of Peking University.

About Yale University

Yale University is an American private Ivy League research university in New Haven, Connecticut. Founded in 1701 in Saybrook Colony to train Congregationalist ministers, it is the third-oldest institution of higher education in the United States.

PS: If you liked this News, you might enjoy our Coatings Industry Newsletter. All the Industry News delivered twice a week right to your inbox. Sign up here!


Source: Yale University
Halcyon Group 3rd R&D Innovation Summit
Back to Top