The Universal Selection Source: Coatings Ingredients

Industry News

Mimicking Bacterial Defense Process to Develop Eco-friendly Anti-fouling Coatings

Published on 2017-02-13. Author : SpecialChem

Chemists at Johannes Gutenberg University Mainz (JGU) have developed a method that reliably hinders hazardous seawater fouling and is

  • Effective
  • Affordable 
  • Easy on the environment

Fouling can occur, for example, as the result of the growth of bacteria, algae, or mollusks in harbor facilities, on boat hulls, and aquaculture netting. The resultant damage and consequential costs can be significant. It is estimated that these are equivalent to 200 billion dollars annually in the shipping industry alone. Protective coatings applied to vessels usually contain copper-based biocides. These have the disadvantage that they harm the environment while resistance to them can also develop.

Production of Eco-friendly Hull Coatings

marine fouling
Illustration of the mode of action of bioinspired underwater paints

In order to find an alternative, the Mainz-based research team of Professor Wolfgang Tremel decided to simulate a defense mechanism employed by algae and established that cerium dioxide nanoparticles can effectively prevent fouling. This discovery could contribute towards the production of new protective coatings that are much less environmentally harmful than the hull coatings in use to date.

Marine Algae

  • Marine algae utilize secondary metabolic products in order to provide themselves with a form of chemical defense against micro-organisms and predators
  • The halogenated secondary metabolites specifically prevent bacterial biofilms, other algae, and even barnacles becoming attached to and developing on larger formations of algae, sponges, and other creatures
  • Halogenated compounds produced by the red seaweed Delisea pulchra, for instance, inhibit bacterial fouling but are neither toxic nor growth-retarding. Instead, they scupper what is known as quorum sensing, i.e, a system used by bacteria to communicate with the help of messenger substances that result in the formation of biofilms
  • The structures of the halogenated compounds synthesized by seaweeds are similar to those of these substances so that they cause a blockade of the bacterial receptors and suppress the switchover of bacterial gene regulation to biofilm formation
  • This form of interference with bacterial gene regulation is also of pharmaceutical interest as it is known that pathogenic bacteria can protect themselves against attack by the immune system and the effect of antibiotics by forming biofilms, for instance on the epithelium of the respiratory system

Mimicking Natural Defense Process

Antifouling paint
Commercially available antifouling paint
with and without cerium dioxide nanoparticles
was applied to stainless steel plates.
Several control plates are displayed
as well. The plates were attached
statically to a boat bridge with direct exposure
to fresh water. After 52 days, the control
plates without cerium dioxide
nanoparticles showed heavy fouling. In
contrast, the plate with the
cerium dioxide coating did not.

This natural defense process has been mimicked by the Mainz-based team of chemists using nanoparticles of cerium dioxide. "Field tests have shown that cerium dioxide is an ecologically acceptable alternative to cuprite, a substance that is used as a biocide together with copper thiocyanate and copper pyridine at concentrations of up to 50 percent in anti-fouling coatings," explained Professor Wolfgang Tremel of JGU’s Institute of Inorganic Chemistry and Analytical Chemistry. But such copper compounds are toxic and accumulate in the environment. This is why some countries, such as Canada and Denmark, have imposed strict limitations on the use of copper-based anti-fouling coatings.

Eco-friendly Alternative to Cupriferous Biocides


"All modern catalytic converters in vehicles use cerium dioxide. It is non-toxic and chemically extremely stable," added Karoline Herget, who wrote her doctoral thesis on the project. She is convinced that cerium dioxide is a practical and cost-effective alternative to conventional biocides.

Cerium dioxide is an oxide of the rare earth element cerium and a by-product of the process of extraction of rare earth metals. Despite belonging to the family of rare earth elements, cerium itself is not particularly scarce. Its cost is thus comparable with that of cuprite (copper(I) oxide), although it is effective in far lower quantities. "What we have here is an environmentally compatible component of a new generation of anti-fouling coatings that simulate the natural defense systems employed by marine organisms. What is important is that it is effective not only under laboratory conditions but also when actually used in the aquatic environment," Herget concluded. Steel panels with cerium oxide coatings can be exposed to seawater for weeks on end without becoming covered by bacteria, algae, mollusks, or barnacles. Reference samples with conventional water-based coatings develop massive fouling over the same time period.

Innovative Technique


Biofilms are around virtually everywhere. The main problem in connection with combating these using biocides and antibiotics is the risk of the development of resistance. This drawback could be effectively circumvented in an ecologically acceptable manner by applying surface coatings of cerium dioxide particles. This innovative technique thus has potential applications in the fields of boat and exterior coatings, roof coverings, outdoor textiles, polymer membranes used for desalination, enclosures employed in aquaculture, and in many plastic components.

The research project was undertaken in cooperation with BASF and the results have been published in the journal Advanced Materials.

About JGU

With more than 32,000 students from about 120 nations, Johannes Gutenberg University Mainz (JGU) is one of the largest universities in Germany. As the only comprehensive university in Rhineland-Palatinate, JGU combines almost all academic disciplines under one roof, including the Mainz University Medical Center, the School of Music, and the Mainz Academy of Arts.


PS: If you liked this News, you might enjoy our Coatings Industry Newsletter. All the Industry News delivered twice a week right to your inbox. Sign up here!


Source: JGU
Be the first to comment on "Mimicking Bacterial Defense Process to Develop Eco-friendly Anti-fouling Coatings "

Leave a comment





Your email address and name will not be published submitting a comment or rating implies your acceptance to SpecialChem Terms & Conditions
Autonomic materials REC

Online Course

Andreas Tschech
0 Days left to register

Tuesday Jul 11 2017

By Andreas Tschech

Clarify the new EU food contact regulation requirements and define the right migration testing strategy for your food contact approval application.

Read More
Channel Alerts

Receive weekly digests on hot topics

Receive your alerts

Back to Top