The Universal Selection Source: Coatings Ingredients


Efficient Selection of Bio-Based Surfactants for Emulsion Polymerization

Sander van Loon – Mar 24, 2017

Selecting Bio-Based Surfactants for Emulsion PolymerizationThe emulsion stability is a major concern while performing emulsion polymerizations and hence, the selection of right surfactant (or a blend of surfactants) allowing green chemical specialties in the product becomes very important.

Although, the selection of bio-based surfactants is been carried out via “trial and error” or HLB approaches since a while, but both the processes face some limitations and are quite expensive and time consuming too…

Fortunately, a new theory HLD-NAC has been introduced for emulsion polymerization that has already been proved in various fields, allows a fast and practical selection of right surfactants for the development of (micro-) emulsions.

It’s an extremely versatile, reliable and effective approach towards emulsion polymerization... Do you know why? Read on to find out more!

8 Comments on "Efficient Selection of Bio-Based Surfactants for Emulsion Polymerization"
Sander van L Aug 30, 2017
Dear Jose C, thanks for your question and nice note! Indeed, we perform the reactions at the same rpm and stirrer in our High Throughput system to obtain consistent results. The next step indeed is the full characterization of the products and film, and optimize the emulsions even further. In October 2017 we will start to continue in this direction, so I hope to publish something again the beginning of 2018! Or let me know if you have an interest to collaborate of course.
Jose C Aug 23, 2017
Did the emulsions and polymerizations were carried out at the same rpm (stirring speed) and using same stirrer paddle?. Note: it should be well received if your experiments should be correlated with the final product properties such as particle diameter , mass molecular...and so for. Congratulations
Titus S May 10, 2017
Dear Sander, thank you for your extensive explanations. When characteristic curvature loses its original meaning 'characteristic' needs a more detailed understanding in future. Otherwise it will be only successful fitting have a sufficient number of variables, unfortunately. Greetings Titus
Sander van L May 9, 2017
Thank you Saleem R for your nice comment! Hope you will use the HLD-NAC approach too!
Sander van L May 9, 2017
Indeed you are right about the APG, thank you for noticing it. Despite having only 1 glucose ring per molecule Lauryl Glucoside will be affected in the same way by the temperature as APGs. So a simplification was made by including it in the “APGs” group. Here the aim was to replace the ionic surfactant. A small amount of OC-25 was kept from the initial formulation, as monomer emulsification is not the only key process parameter to obtain a binder with good properties, such as substrate wetting. Nevertheless, a highly stable emulsion could be obtained using only Lauryl Glucoside. These are the answers, let me know if all is clear now. Thanks, Sander
Sander van L May 9, 2017
Dear Titus, Thanks for your comments, and sorry for my late reply on this! See here the answers to your questions, hope this helps. The salinity S represents the salinity of the salts presents in the water phase (ex. NaCl). For non-ionic surfactants, the effect of the salts presents in the water phase is described by the function: F(S) = b*S, the value of b depends on the type ions (ex. b = 0.13 for NaCl). From Prof. Steven Abbott’s website (“But what is Cc? The name was originally Characteristic Curvature which seemed a good idea at the time. There are some thermodynamic reasons why the name might be thought appropriate. But the truth is that the name really has no helpful meaning. Let's just call it Cc (perhaps imagine it meaning Characteristic) because that's what is generally used in the literature. More important than the name are the values.” SDHS is an ionic surfactant, therefore it contributes to some extent to the salinity of the emulsion. To calculate the equivalent salinity brought by an ionic surfactant you can use the formula on Prof. Steven Abbott website: The monomers used are technical grade and therefore not 100% pure. They contain some moieties (impurities, synthesis by-products, solvent residues…) that might affect the HLD equation. The EACN is independent of the concentration of the surfactant used but the effect of the moieties is dependent on this concentration and is mostly visible at low concentrations of surfactant. Furthermore, the polarity of certain oils (such as monomers) may affect the linearity of the HLD equation with respect to the surfactant concentration. In order to assess these effects, the EACN of the monomers was measured at 2 different surfactant concentrations. Rest in the next reply....
saleem r Apr 2, 2017
A beautiful and informative article regarding bio based coating technology and good effort to make environmentally paints and other products
Titus S Mar 29, 2017
Dear Sander, thank you for interesting article, however, some details are omitted necessary for full understanding What is nonionic salinity? For me salinity is concentration of salts. One would expect different effect of salinity for mono- and multivalent ions, even between sodium and lithium e.g. in case of SDS. 'Cc is known in a 50:50 (vol) blend' my understanding would be 'surfactant curvature' is determined by surfactant molecular architecture and would therefore not depend on mixing ratio oil/water??? EACN - BA and VA, what is SDHS, why do test at 2 concentrations, why is SDHS 4% related to Ssurf 0.18 g/ 100 ml? Lauryl glucoside should be one glucose ring per molecule - what makes it an APG (polyglucoside)? Term co-surfactant is generally used with meaning of added to improve surfactant action, e.g. hexanol to SDS. Then OC-25 is second compound in surfactant mixture 10/1. Why is it added, when lauryl glucoside is selected as ideal?

Leave a comment

Your email address and name will not be published submitting a comment or rating implies your acceptance to SpecialChem Terms & Conditions


5 Mistakes to Avoid with your Water-Based Metallic Inks

Be a better formulator by avoiding 5 (too) frequent mistakes. You'll see what you need to do differently vs. a standard ink.


Back to Top